
High-Level Data Race Detection

Problem: High-Level Data Races
occur when different activities access
shared resources with different
atomicity views. As an example (left),
activity 1 writes to x and y atomically in
between activity 2 reading these values
(non-atomically). Therefore activity 2
gets inconsistent values for x and y. write x and y

read x

read y

old x value

new y value

inconsistent

Activity 1 Activity 2

Solution: An algorithm has been
designed and implemented that can
examine an execution trace to find view
inconsistencies. For example, activity 1
has the view {x,y} while activity 2 has
the views {x} and {y}, which are
regarded as inconsistent with {x,y}. The
algorithm scales to large programs and
is completely automatic.

Relevance: The Deep-Space 1 Remote
Agent had a high-level data race that was
very hard to find. This could have caused
space craft state inconsistencies to be
ignored by executing tasks during flight.

Explanation of Accomplishment
• POC: Klaus Havelund (ASE group, Code IC, havelund@email.arc.nasa.gov)
• Collaborators: Cyrille Artho (ETH Zurich, Switzerland)
• Background: Concurrency-related errors in multi-threaded mission software often manifest

themselves only under rare circumstances, sometimes never during test, but in flight. Low-level data
races is an example. Low-level data races occur when several activities access a shared resource
simultaneously, causing the resource to have an inconsistent state. Algorithms exists for detecting
such data races. We have gone beyond and studied High-level data races. High-level data races occur
when different activities, that execute in parallel, access shared resources, but with different
atomicity views. This may cause such activities to obtain inconsistent snapshots of the shared
resources. A high-level data race was for example detected in the Deep-Space 1 Remote Agent
before flight, using model checking, however requiring substantial manual effort.

• Accomplishment: We have developed a runtime analysis algorithm for high-level data race
detection. The algorithm detects inconsistencies in the views that different activities have on shared
resources. The algorithm works by analyzing a single randomly chosen execution trace for operations
that take and release locks and for operations that access shared resources. From this information can
be calculated whether all activities have consistent views. Inconsistent views typically arise if at least
one activity “does it right”. A paper with the title “High-Level Data Races” has been accepted for
presentation at VVEIS’03 (The First International Workshop on Verification and Validation of
Enterprise Information Systems). The paper appears to be the first on this subject in the scientific
literature. The algorithm has been applied to the K9 Rover, developed at NASA Ames and to 2 other
industrial applications. An inconsistency was detected in the K9 rover, although non-critical.

• Future Plans: We plan to improve the algorithm by studying its application to more case studies.
The relationship to database concurrency and hardware concurrency theory will be investigated. It
appears that perhaps techniques from these fields may apply to concurrency in programs with shared
variables. For example, we will investigate how our algorithm relates to transaction serialization in
database theory.

mailto:havelund@email.arc.nasa.gov

	High-Level Data Race Detection
	Explanation of Accomplishment

